
http://www.MohammadHajarian.com
Multimedia database

MapReduce

http://www.mohammadhajarian.com/

Single-node architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

Commodity Clusters

 Web data sets can be very large

◼ Tens to hundreds of terabytes

 Cannot mine on a single server (why?)

 Standard architecture emerging:

◼ Cluster of commodity Linux nodes

◼ Gigabit ethernet interconnect

 How to organize computations on this
architecture?

◼ Mask issues such as hardware failure

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

Stable storage

 First order problem: if nodes can fail,
how can we store data persistently?

 Answer: Distributed File System

◼ Provides global file namespace

◼ Google GFS; Hadoop HDFS; Kosmix KFS

 Typical usage pattern

◼ Huge files (100s of GB to TB)

◼ Data is rarely updated in place

◼ Reads and appends are common

Distributed File System

 Chunk Servers
◼ File is split into contiguous chunks

◼ Typically each chunk is 16-64MB

◼ Each chunk replicated (usually 2x or 3x)

◼ Try to keep replicas in different racks

 Master node
◼ a.k.a. Name Nodes in HDFS

◼ Stores metadata

◼ Might be replicated

 Client library for file access
◼ Talks to master to find chunk servers

◼ Connects directly to chunkservers to access data

Warm up: Word Count

 We have a large file of words, one
word to a line

 Count the number of times each
distinct word appears in the file

 Sample application: analyze web
server logs to find popular URLs

Word Count (2)

 Case 1: Entire file fits in memory

 Case 2: File too large for mem, but all
<word, count> pairs fit in mem

 Case 3: File on disk, too many
distinct words to fit in memory

◼ sort datafile | uniq –c

Word Count (3)

 To make it slightly harder, suppose
we have a large corpus of documents

 Count the number of times each
distinct word occurs in the corpus
◼ words(docs/*) | sort | uniq -c

◼ where words takes a file and outputs the

words in it, one to a line

 The above captures the essence of
MapReduce

◼ Great thing is it is naturally parallelizable

MapReduce: The Map Step

vk

k v

k v

map
vk

vk

…

k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

group

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

MapReduce

 Input: a set of key/value pairs

 User supplies two functions:

◼ map(k,v) → list(k1,v1)

◼ reduce(k1, list(v1)) → v2

 (k1,v1) is an intermediate key/value
pair

 Output is the set of (k1,v2) pairs

Word Count using MapReduce

map(key, value):

// key: document name; value: text of document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

Distributed Execution Overview

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

remote
read,
sort

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data

Data flow

 Input, final output are stored on a
distributed file system

◼ Scheduler tries to schedule map tasks
“close” to physical storage location of
input data

 Intermediate results are stored on
local FS of map and reduce workers

 Output is often input to another map
reduce task

Coordination

 Master data structures

◼ Task status: (idle, in-progress, completed)

◼ Idle tasks get scheduled as workers
become available

◼ When a map task completes, it sends the
master the location and sizes of its R
intermediate files, one for each reducer

◼ Master pushes this info to reducers

 Master pings workers periodically to
detect failures

Failures

 Map worker failure

◼ Map tasks completed or in-progress at
worker are reset to idle

◼ Reduce workers are notified when task is
rescheduled on another worker

 Reduce worker failure

◼ Only in-progress tasks are reset to idle

 Master failure

◼ MapReduce task is aborted and client is
notified

How many Map and Reduce jobs?

 M map tasks, R reduce tasks

 Rule of thumb:

◼ Make M and R much larger than the
number of nodes in cluster

◼ One DFS chunk per map is common

◼ Improves dynamic load balancing and
speeds recovery from worker failure

 Usually R is smaller than M, because
output is spread across R files

Combiners

 Often a map task will produce many
pairs of the form (k,v1), (k,v2), … for
the same key k
◼ E.g., popular words in Word Count

 Can save network time by pre-
aggregating at mapper
◼ combine(k1, list(v1)) → v2

◼ Usually same as reduce function

 Works only if reduce function is
commutative and associative

Partition Function

 Inputs to map tasks are created by
contiguous splits of input file

 For reduce, we need to ensure that
records with the same intermediate
key end up at the same worker

 System uses a default partition
function e.g., hash(key) mod R

 Sometimes useful to override
◼ E.g., hash(hostname(URL)) mod R

ensures URLs from a host end up in the
same output file

Implementations

 Google
◼ Not available outside Google

 Hadoop
◼ An open-source implementation in Java

◼ Uses HDFS for stable storage

◼ Download: http://lucene.apache.org/hadoop/

 Aster Data

◼ Cluster-optimized SQL Database that
also implements MapReduce

◼ Made available free of charge for this
class

http://lucene.apache.org/hadoop/

