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Commodity Clusters

 Web data sets can be very large 

◼ Tens to hundreds of terabytes

 Cannot mine on a single server (why?)

 Standard architecture emerging:

◼ Cluster of commodity Linux nodes

◼ Gigabit ethernet interconnect

 How to organize computations on this 
architecture?

◼ Mask issues such as hardware failure



Cluster Architecture
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Stable storage

 First order problem: if nodes can fail, 
how can we store data persistently? 

 Answer: Distributed File System

◼ Provides global file namespace

◼ Google GFS; Hadoop HDFS; Kosmix KFS

 Typical usage pattern

◼ Huge files (100s of GB to TB)

◼ Data is rarely updated in place

◼ Reads and appends are common



Distributed File System

 Chunk Servers
◼ File is split into contiguous chunks

◼ Typically each chunk is 16-64MB

◼ Each chunk replicated (usually 2x or 3x)

◼ Try to keep replicas in different racks

 Master node
◼ a.k.a. Name Nodes in HDFS

◼ Stores metadata

◼ Might be replicated

 Client library for file access
◼ Talks to master to find chunk servers 

◼ Connects directly to chunkservers to access data



Warm up: Word Count

 We have a large file of words, one 
word to a line

 Count the number of times each 
distinct word appears in the file

 Sample application: analyze web 
server logs to find popular URLs



Word Count (2)

 Case 1: Entire file fits in memory

 Case 2: File too large for mem, but all 
<word, count> pairs fit in mem

 Case 3: File on disk, too many 
distinct words to fit in memory

◼ sort datafile | uniq –c



Word Count (3)

 To make it slightly harder, suppose 
we have a large corpus of documents

 Count the number of times each 
distinct word occurs in the corpus
◼ words(docs/*) | sort | uniq -c

◼ where words takes a file and outputs the 

words in it, one to a line

 The above captures the essence of 
MapReduce

◼ Great thing is it is naturally parallelizable



MapReduce: The Map Step
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MapReduce: The Reduce Step
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MapReduce

 Input: a set of key/value pairs

 User supplies two functions:

◼ map(k,v) → list(k1,v1)

◼ reduce(k1, list(v1)) → v2

 (k1,v1) is an intermediate key/value 
pair

 Output is the set of (k1,v2) pairs



Word Count using MapReduce

map(key, value):

// key: document name; value: text of document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)



Distributed Execution Overview 
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Data flow

 Input, final output are stored on a 
distributed file system

◼ Scheduler tries to schedule map tasks 
“close” to physical storage location of 
input data

 Intermediate results are stored on 
local FS of map and reduce workers

 Output is often input to another map 
reduce task



Coordination

 Master data structures

◼ Task status: (idle, in-progress, completed)

◼ Idle tasks get scheduled as workers 
become available

◼ When a map task completes, it sends the 
master the location and sizes of its R 
intermediate files, one for each reducer

◼ Master pushes this info to reducers

 Master pings workers periodically to 
detect failures



Failures

 Map worker failure

◼ Map tasks completed or in-progress at 
worker are reset to idle

◼ Reduce workers are notified when task is 
rescheduled on another worker

 Reduce worker failure

◼ Only in-progress tasks are reset to idle

 Master failure

◼ MapReduce task is aborted and client is 
notified



How many Map and Reduce jobs?

 M map tasks, R reduce tasks

 Rule of thumb:

◼ Make M and R much larger than the 
number of nodes in cluster

◼ One DFS chunk per map is common

◼ Improves dynamic load balancing and 
speeds recovery from worker failure

 Usually R is smaller than M, because 
output is spread across R files



Combiners

 Often a map task will produce many 
pairs of the form (k,v1), (k,v2), … for 
the same key k
◼ E.g., popular words in Word Count

 Can save network time by pre-
aggregating at mapper
◼ combine(k1, list(v1)) → v2

◼ Usually same as reduce function

 Works only if reduce function is 
commutative and associative



Partition Function

 Inputs to map tasks are created by 
contiguous splits of input file

 For reduce, we need to ensure that 
records with the same intermediate 
key end up at the same worker

 System uses a default partition 
function e.g., hash(key) mod R

 Sometimes useful to override 
◼ E.g., hash(hostname(URL)) mod R 

ensures URLs from a host end up in the 
same output file



Implementations

 Google
◼ Not available outside Google

 Hadoop
◼ An open-source implementation in Java

◼ Uses HDFS for stable storage

◼ Download: http://lucene.apache.org/hadoop/

 Aster Data

◼ Cluster-optimized SQL Database that 
also implements MapReduce

◼ Made available free of charge for this 
class

http://lucene.apache.org/hadoop/

