
http://www.MohammadHajarian.com
Multimedia database

MapReduce

http://www.mohammadhajarian.com/

Single-node architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

Commodity Clusters

 Web data sets can be very large

◼ Tens to hundreds of terabytes

 Cannot mine on a single server (why?)

 Standard architecture emerging:

◼ Cluster of commodity Linux nodes

◼ Gigabit ethernet interconnect

 How to organize computations on this
architecture?

◼ Mask issues such as hardware failure

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

Stable storage

 First order problem: if nodes can fail,
how can we store data persistently?

 Answer: Distributed File System

◼ Provides global file namespace

◼ Google GFS; Hadoop HDFS; Kosmix KFS

 Typical usage pattern

◼ Huge files (100s of GB to TB)

◼ Data is rarely updated in place

◼ Reads and appends are common

Distributed File System

 Chunk Servers
◼ File is split into contiguous chunks

◼ Typically each chunk is 16-64MB

◼ Each chunk replicated (usually 2x or 3x)

◼ Try to keep replicas in different racks

 Master node
◼ a.k.a. Name Nodes in HDFS

◼ Stores metadata

◼ Might be replicated

 Client library for file access
◼ Talks to master to find chunk servers

◼ Connects directly to chunkservers to access data

Warm up: Word Count

 We have a large file of words, one
word to a line

 Count the number of times each
distinct word appears in the file

 Sample application: analyze web
server logs to find popular URLs

Word Count (2)

 Case 1: Entire file fits in memory

 Case 2: File too large for mem, but all
<word, count> pairs fit in mem

 Case 3: File on disk, too many
distinct words to fit in memory

◼ sort datafile | uniq –c

Word Count (3)

 To make it slightly harder, suppose
we have a large corpus of documents

 Count the number of times each
distinct word occurs in the corpus
◼ words(docs/*) | sort | uniq -c

◼ where words takes a file and outputs the

words in it, one to a line

 The above captures the essence of
MapReduce

◼ Great thing is it is naturally parallelizable

MapReduce: The Map Step

vk

k v

k v

map
vk

vk

…

k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

group

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

MapReduce

 Input: a set of key/value pairs

 User supplies two functions:

◼ map(k,v) → list(k1,v1)

◼ reduce(k1, list(v1)) → v2

 (k1,v1) is an intermediate key/value
pair

 Output is the set of (k1,v2) pairs

Word Count using MapReduce

map(key, value):

// key: document name; value: text of document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

Distributed Execution Overview

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

remote
read,
sort

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data

Data flow

 Input, final output are stored on a
distributed file system

◼ Scheduler tries to schedule map tasks
“close” to physical storage location of
input data

 Intermediate results are stored on
local FS of map and reduce workers

 Output is often input to another map
reduce task

Coordination

 Master data structures

◼ Task status: (idle, in-progress, completed)

◼ Idle tasks get scheduled as workers
become available

◼ When a map task completes, it sends the
master the location and sizes of its R
intermediate files, one for each reducer

◼ Master pushes this info to reducers

 Master pings workers periodically to
detect failures

Failures

 Map worker failure

◼ Map tasks completed or in-progress at
worker are reset to idle

◼ Reduce workers are notified when task is
rescheduled on another worker

 Reduce worker failure

◼ Only in-progress tasks are reset to idle

 Master failure

◼ MapReduce task is aborted and client is
notified

How many Map and Reduce jobs?

 M map tasks, R reduce tasks

 Rule of thumb:

◼ Make M and R much larger than the
number of nodes in cluster

◼ One DFS chunk per map is common

◼ Improves dynamic load balancing and
speeds recovery from worker failure

 Usually R is smaller than M, because
output is spread across R files

Combiners

 Often a map task will produce many
pairs of the form (k,v1), (k,v2), … for
the same key k
◼ E.g., popular words in Word Count

 Can save network time by pre-
aggregating at mapper
◼ combine(k1, list(v1)) → v2

◼ Usually same as reduce function

 Works only if reduce function is
commutative and associative

Partition Function

 Inputs to map tasks are created by
contiguous splits of input file

 For reduce, we need to ensure that
records with the same intermediate
key end up at the same worker

 System uses a default partition
function e.g., hash(key) mod R

 Sometimes useful to override
◼ E.g., hash(hostname(URL)) mod R

ensures URLs from a host end up in the
same output file

Implementations

 Google
◼ Not available outside Google

 Hadoop
◼ An open-source implementation in Java

◼ Uses HDFS for stable storage

◼ Download: http://lucene.apache.org/hadoop/

 Aster Data

◼ Cluster-optimized SQL Database that
also implements MapReduce

◼ Made available free of charge for this
class

http://lucene.apache.org/hadoop/

